2016/17 MATH2230B/C Complex Variables with Applications Problems in HW 3
 Due Date on 9 Mar 2017

All the problems are from the textbook, Complex Variables and Application (9th edition).

1 P. 133

For the functions f and contours C in Exercise 8, use parametric representations for C or legs of C to evaluate

$$
\int_{C} f(z) \mathrm{d} z
$$

8. $f(z)$ is the principal branch

$$
z^{a-1}=\exp [(a-1) \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the power function z^{a-1}, where a is a nonzero real number and C is the positively oriented circle of radius R about the origin.
11. Let C denote the semicircular path

$$
C=\{z:|z|=2, \operatorname{Re}(z) \geq 0\}
$$

Evaluate the integral of the function $f(z)=\bar{z}$ along C using the parametric representation
(a) $z=2 e^{i \theta} \quad\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right) ;$
(b) $z=\sqrt{4-y^{2}}+i y \quad(-2 \leq y \leq 2)$.

$2 \quad$ P. 139

5. Let C_{R} be the circle $|z|=R(R>1)$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} \mathrm{~d} z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then use l'Hospital's rule to show that the value of this integral tends to zero as R tends to infinity.
6. Let C_{ρ} denote a circle $|z|=\rho(0<\rho<1)$ oriented in the counterclockwise direction and suppose that $f(z)$ is analytic in the disk $|z| \leq 1$. Show that if $z^{-1 / 2}$ represents any particular branch of that power of z, then there is a nonnegative constant M independent of ρ such that

$$
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) \mathrm{d} z\right| \leq 2 \pi M \sqrt{\rho}
$$

Thus show that the value of the integral here approaches 0 as ρ tends to 0 .

$3 \quad$ P. 147

5. Show that

$$
\int_{-1}^{1} z^{i} \mathrm{~d} z=\frac{1+e^{-\pi}}{2}(1-i)
$$

where the integrand denotes the principal branch

$$
z^{i}=\exp (i \log z) \quad(|z|>0 .-\pi<\operatorname{Arg} z<\pi)
$$

of z^{i} and where path of integration is any contour from $z=-1$ to $z=1$ that except for its end points lies above the real axis.

$4 \quad$ P. 159

2. Let C_{1} denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1, y= \pm 1$ and let C_{2} be the positively oriented circle $|z|=4$. With the aid of the corollary in Sec. 53 , point out why

$$
\int_{C_{1}} f(z) \mathrm{d} z=\int_{C_{2}} f(z) \mathrm{d} z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$;
(b) $f(z)=\frac{z+2}{\sin (z / 2)}$;
(a) $f(z)=\frac{z}{1-e^{z}}$.
4. Use the following method to derive the integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=\frac{\sqrt{p i}}{2} e^{-b^{2}} \quad(b>0)
$$

(a) Show that the sum of the integrals of $e^{-z^{2}}$ along the lower and upper horizontal legs of the rectangular path $\{x= \pm a, y=0$ or $y=b\}$ can be written

$$
2 \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x
$$

and that the sum of the integrals along the vertical legs on the right and left can be written

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} x-i e^{a^{2}} \int_{0}^{b} e^{y^{2}-i 2 a y} \mathrm{~d} y
$$

Thus with the aid of the Cauchy-Coursat theorem, show that

$$
\int_{0}^{a} e^{-x^{2}} \cos 2 b x \mathrm{~d} x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} \mathrm{~d} x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y
$$

(b) By accepting the fact that

$$
\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2}
$$

and observing that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y \mathrm{~d} y\right| \leq \int_{0}^{b} e^{y^{2}} \mathrm{~d} y
$$

obtain the desired integration formula by letting a tend to infinity in the equation at the end of part (a).

$5 \quad$ P. 170

2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $g(z)=\frac{1}{z^{2}+4}$;
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.
3. Let C be the circle $|z|=3$ described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} \mathrm{~d} s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
4. Let C be any simple closed contour described in the positive sense in the z plane and write

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} \mathrm{~d} s
$$

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside.

